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Abstract
This paper treats the isometries of metric spaces of quantum states. In fact, we
consider two metrics on the set of all quantum states, namely the Bures metric
and that which comes from the trace-norm. We describe all the corresponding
(nonlinear) isometries and also present similar results concerning the space of
all (non-normalized) density operators.
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1. Introduction and statements of the results

The concepts of observables and states are of fundamental importance in quantum mechanics.
In the Hilbert space formalism of the theory, the (bounded) observables are represented by
the self-adjoint bounded linear operators of a Hilbert space H while the (normal) states are
identified with the positive trace-class operators on H with trace 1. In the literature, one
can find several metrics defined on the set of states which all come from different physical
problems. A short summary of these problems and the corresponding metrics are given in
the introduction of paper [1]. It turns out from the discussion there that all the metrics under
consideration can be deduced from two fundamental distance functions which are the so-called
Bures metric and the metric induced by the trace-norm.

Recently, Uhlmann, whose research work is closely connected with the study of Bures
metric and transition probability (see, for example, [2–5]), has posed the following questions.
Is it possible to describe all the transformations which preserve the Bures distance or, in other
words, all the isometries of the space of all states (or the larger space of all density operators)
equipped with the Bures metric? Moreover, in which connection are those isometries with the
symmetry transformations? In this paper, we answer these questions by showing that every
isometry under consideration is implemented by either a unitary or antiunitary operator on
the underlying Hilbert space. Furthermore, we obtain results of the same spirit concerning
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the other fundamental metric as well. We remark that interesting results and some physical
applications can be found in [6] on linear but not necessarily surjective isometries with respect
to this latter metric. In fact, in what follows we shall use two of the results in [6]. So, to sum
up, as a consequence of our results, all the isometries with respect to all the metrics appearing
in the introduction of [1] are determined.

Let us begin with the notation and the necessary definitions. Let H be a complex Hilbert
space. We denote by B(H) the algebra of all bounded linear operators on H. The ideal of all
trace-class operators, that is, those operators whose absolute value has finite trace, is denoted
by C1(H). As usual, tr stands for the trace functional on C1(H). The positive operators in
C1(H) with trace 1 are called (normal) states and their collection is denoted by S(H). This
is a convex set whose extreme points are well known to be the rank-1 projections which are
called pure states. Sometimes it is natural or just convenient to omit the normalizing condition
tr A = 1. Accordingly, C+

1 (H) stands for the set of all positive trace-class operators (called
density operators) on H.

For obvious reasons, we define our two basic metrics for the larger space C+
1 (H). We

begin with the Bures metric for which we need the concept of fidelity in the sense of Uhlmann
[3, 7]. The fidelity F(A,B) of the operators A,B ∈ C+

1 (H) is defined by

F(A,B) = tr(A1/2BA1/2)1/2.

With the help of this, the Bures metric db on C+
1 (H) is expressed by the formula

db(A,B) = (tr A + tr B − 2F(A,B))1/2 (
A,B ∈ C+

1 (H)
)
.

The other metric we are interested in comes from the trace-norm. If A ∈ C1(H), then its
trace-norm (or, in other words, 1-norm) is

‖A‖1 = tr|A|
where |A| stands for the absolute value of A. Our second metric denoted by d1 is defined by

d1(A,B) = ‖A − B‖1 = tr|A − B| (
A,B ∈ C+

1 (H)
)
.

As for the metrics on S(H), they are just the restrictions of db, d1 onto S(H).
Turning to the results of the paper, we note that they can be formulated in one single

statement as follows. The isometries of both of the spaces S(H),C+
1 (H) with respect to both

of the metrics db, d1 are induced by unitary or antiunitary operators of the underlying Hilbert
space. However, in order that the proof is clear, well-sectioned and hence easy to follow, we
divide this statement into parts as given below.

We emphasize that the transformations in our results are not assumed to be linear in any
sense.

Theorem 1. Let φ : C+
1 (H) → C+

1 (H) be a bijective map which preserves the Bures distance,
that is, suppose that

db(φ(A), φ(B)) = db(A,B)
(
A,B ∈ C+

1 (H)
)
.

Then there is either a unitary or antiunitary operator U on H such that φ is of the form

φ(A) = UAU∗ (
A ∈ C+

1 (H)
)
. (1)

Theorem 2. Let φ : S(H) → S(H) be a bijective map which preserves the Bures distance.
Then there is either a unitary or antiunitary operator U on H such that φ is of the form

φ(A) = UAU∗ (A ∈ S(H)). (2)
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Theorem 3. If φ is a bijective map of C+
1 (H) which preserves the distance d1, then there is

either a unitary or antiunitary operator U on H such that φ is of the form (1).

Theorem 4. If φ : S(H) → S(H) is a bijective map which preserves the distance d1, then
there is either a unitary or antiunitary operator U on H such that φ is of the form (2).

2. Proofs

As will be clear from the proofs below, the non-normalized cases (that is, when φ is defined
on C+

1 (H)) are more complicated. In fact, concerning both metrics it is an essential part of
our arguments to show that the corresponding isometries send 0 to 0. In order to see this, we
have to characterize 0 in terms of the metric alone. As for the Bures metric this is done in our
first lemma.

Let A ∈ C+
1 (H) and ε > 0. Denote by Bb

ε (A) (resp. B1
ε (A)) the closed ball in C+

1 (H)

equipped with the Bures metric db (resp. the metric d1) with centre A and radius ε.

Lemma 1. Let A ∈ C+
1 (H). We have A = 0 if and only if diam Bb

ε (A) �
√

2ε holds for every
ε > 0.

Proof. First we prove that diam Bb
ε (0) �

√
2ε. Let ε > 0. Pick arbitrary X,Y ∈ Bb

ε (0). We
have

(tr X)1/2 = db(X, 0) � ε

and the same inequality holds for Y as well. We compute

db(X, Y )2 = tr X + tr Y − 2F(X, Y ) � tr X + tr Y � 2ε2

and hence obtain the desired inequality for the diameter of Bb
ε (0).

We note that it is quite easy to see that if dim H � 2, then diam Bb
ε (0) is exactly

√
2ε

( just take two rank-1 projections P,Q which are orthogonal to each other and consider the
operators X = ε2P, Y = ε2Q), while in the case when dim H = 1 we have diam Bb

ε (0) = ε.
Now, let A ∈ C+

1 (H) be nonzero and define ε = √
tr A. It is easy to verify that

0, 4A ∈ Bb
ε (A) and db(0, 4A) = 2ε, so we have diam Bb

ε (A) = 2ε >
√

2ε. �

Using this metric characterization of 0, the proof of theorem 1 is easy. The main point is
to show that our isometries preserve the fidelity.

We note that in what follows whenever we speak about the preservation of an object or
relation we always mean that it is preserved in both directions.

Proof of theorem 1. As φ preserves the Bures distance, we obtain that

diam Bb
ε (φ(A)) = diam Bb

ε (A).

Applying the characterization of 0 given in lemma 1, we easily deduce that φ(0) = 0. Since

tr A = db(A, 0)2 = db(φ(A), φ(0))2 = db(φ(A), 0)2 = tr φ(A)

we see that φ preserves the trace. Considering the definition of the Bures distance, it is now
obvious that φ preserves the fidelity. The form of such transformations was described in our
recent paper [8]. By [8, theorem 1] we have that φ is of the form (1). �

Proof of theorem 2. In this case the proof is easier. Indeed, since φ sends trace-1 operators to
trace-1 operators, we see at once from the definition of db that φ preserves the fidelity. Thus
we can apply our corresponding result on the form of fidelity preserving maps on S(H) which
is given in the concluding remarks of paper [8]. This completes the proof. �
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We now turn to the description of the isometries with respect to the metric d1. Just as in
the case of the Bures metric, we shall need a characterization of 0 expressed by the metric d1

alone. This is the content of the next lemma.

Lemma 2. Let A ∈ C+
1 (H). Then A = 0 if and only if for every ε > 0 and X,Y ∈ C+

1 (H)

with the properties that

d1(X,A) = ε d1(Y,A) = ε d1(X, Y ) = 2ε

we have

B1
ε (X) ∩ B1

ε (Y ) � {A}.

Proof. First let A = 0. Let ε > 0 be arbitrary. Take X,Y ∈ C+
1 (H) such that

‖X‖1, ‖Y‖1 = ε, ‖X − Y‖1 = 2ε. Set Z = 1
2 (X + Y ). It is obvious that Z ∈ C+

1 (H)

and

‖X − Z‖1 = 1
2‖X − Y‖1 = ε

and, similarly, we have ‖Y − Z‖1 = ε. So,

Z ∈ B1
ε (X) ∩ B1

ε (Y ).

Moreover, Z �= 0 since in the opposite case (that is, when X + Y = 0) by the positivity of
X,Y we would get X = Y = 0 and this is a contradiction. This proves the first part of our
statement.

For the second part, let A be a nonzero element of C+
1 (H). Clearly, there are a

positive scalar ε and a rank-1 projection P such that A + εP,A − εP ∈ C+
1 (H). Define

X = A + εP, Y = A − εP . We have d1(X,A) = d1(Y,A) = ε and d1(X, Y ) = 2ε. Let
Z ∈ C+

1 (H) be such that d1(X,Z), d1(Y,Z) � ε. Set T = X −Z and S = Z −Y . We clearly
have

‖T ‖1, ‖S‖1 � ε (3)

and
1
2 (T + S) = 1

2 (X − Y ) = εP. (4)

The result [9, theorem (3.1)] of Holub tells us that the extreme points of the unit ball of the
normed linear space C1(H) are exactly the rank-1 operators of norm 1. Therefore, using (3)
and (4) we obtain that T = S = εP . This gives us that εP = T = X − Z = A + εP − Z

which implies Z = A. Therefore, we have proved that

B1
ε (X) ∩ B1

ε (Y ) = {A}.
The proof is complete. �

Now, we are in a position to prove theorem 3. In the proof, we use a nice result of
Mankiewicz, namely, [10, theorem 5] (also see the remark after that theorem) which states
that if we have a bijective isometry between convex sets in normed linear spaces with nonempty
interiors, then this isometry can be uniquely extended to a bijective affine isometry between the
whole spaces. Moreover, we also use a characterization of the orthogonality of the elements
of C+

1 (H) which can be found in [6]. We say that the operators X,Y ∈ C+
1 (H) are orthogonal

if XY = 0. By (2.2) in [6], for every X,Y ∈ C+
1 (H) we have

XY = 0 ⇐⇒ ‖X − Y‖1 = ‖X + Y‖1. (5)

Proof of theorem 3. By the metric characterization of 0 given in lemma 2, we obtain that
φ(0) = 0.
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We assert that φ preserves the orthogonality. In order to verify this, let X,Y ∈ C+
1 (H).

By the positivity of X,Y and X + Y we have

‖X + Y‖1 = tr(X + Y ) = tr X + tr Y = ‖X‖1 + ‖Y‖1.

It follows from the characterization (5) of the orthogonality that

XY = 0 ⇐⇒ ‖X − Y‖1 = ‖X‖1 + ‖Y‖1 ⇐⇒ d1(X, Y ) = d1(X, 0) + d1(Y, 0).

Since φ preserves the distance d1 and sends 0 to 0, we obtain that φ preserves the orthogonality.
For any set M ⊂ C+

1 (H), we denote by M⊥ the set of all elements of C+
1 (H) which are

orthogonal to every element of M. It is easy to see that an operator A ∈ C+
1 (H) is of rank

n if and only if the set {A}⊥⊥ contains n pairwise orthogonal nonzero elements and no more.
As φ preserves the orthogonality and sends 0 to 0, it is now clear that φ preserves the rank of
operators.

Let Hn be an arbitrary n-dimensional subspace of H. Pick an operator A ∈ C+
1 (H) whose

range is Hn and let H ′
n denote the range of φ(A). We know that dim H ′

n = n. We say that a
self-adjoint operator T acts on the closed subspace H0 of H if T (H0) ⊂ H0 and T

(
H⊥

0

) = {0}.
It is then easy to see that those elements of C+

1 (H) which act on Hn are exactly the elements
of {A}⊥⊥. By the orthogonality preserving property of φ we have

φ({A}⊥⊥) = {φ(A)}⊥⊥.

Hence, we get that φ maps isometrically the set of all elements of C+
1 (H) which act on Hn

onto the set of all elements of C+
1 (H) which act on H ′

n. In this way we can reduce the problem
to the finite dimensional case.

It is obvious that in the finite dimensional case, the convex set of all density operators
has nonempty interior in the normed linear spaces of all self-adjoint operators. (In fact, the
interior of this set consists of all invertible positive operators.) Consequently, the result of
Mankiewicz applies.

Denote by C1(H)s the real linear space of all self-adjoint operators in C1(H). Define the
map ψ : C1(H)s → C1(H)s by

ψ(T ) = φ(T+) − φ(T−) (T ∈ C1(H)s).

Here T+, T− denote the positive and negative parts of T ∈ C1(H)s , respectively, that is, we
have

T+ = 1
2 (|T | + T ) T− = 1

2 (|T | − T ).

Using Mankiewicz’s result and what we have proved above, we see that ψ , when restricted to
the set of all self-adjoint operators which act on Hn, equals the Mankiewicz extension of φ

and hence it is a linear isometry onto the set of all self-adjoint operators which act on H ′
n. We

recall that Hn was an arbitrary finite dimensional subspace of H. Therefore, we deduce that
ψ is a linear isometry from the space of all self-adjoint finite rank operators on H onto itself.
But this set is dense in C1(H)s and ψ is continuous on C1(H)s . In fact, this follows from the
continuity of φ and from the continuity of the absolute value in C1(H) (see [11, example 1,
p 42]). It is now obvious that ψ is a surjective linear isometry of C1(H)s . Even more is
true. In fact, as φ is an isometry and sends 0 to 0, it is clear that ψ sends positive operators
to positive operators and preserves the trace. In the terminology of paper [6], we can say
that ψ is a surjective stochastic isometry. According to the result [6, proposition 3.1], ψ is
implemented by a unitary–antiunitary operator and this completes the proof. �

Finally, we prove our last result.
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Proof of theorem 4. Let φ : S(H) → S(H) be a bijective map which preserves the distance d1.
Let X,Y ∈ S(H). Since ‖X‖1 = ‖Y‖1 = 1 and

‖X + Y‖1 = tr (X + Y ) = tr X + tr Y = 2

using (5) we infer that

XY = 0 ⇐⇒ ‖X − Y‖1 = 2 ⇐⇒ d1(X, Y ) = 2.

Therefore, we obtain that φ preserves the orthogonality.
Now, we can borrow some steps from the proof of theorem 3. Indeed, using the argument

presented there we can prove that φ preserves the rank. Next we can show that for an arbitrary
n-dimensional subspace Hn of H, there exists an n-dimensional subspace H ′

n of H with the
property that A ∈ S(H) acts on Hn if and only if φ(A) acts on H ′

n. Hence, just as in the proof
of theorem 3, we can reduce the problem to the finite dimensional case.

Let us see what we can do if H is finite dimensional. Denote by T0(H) the linear space of
all trace-zero self-adjoint operators on H. Clearly, T0(H) is a normed linear space under the
norm ‖·‖1. Let n = dim H . We assert that the convex subset K(H) = S(H)− I

n
of T0(H) has

nonempty interior. In fact, this is because the elements of that set can be characterized as those
trace-zero self-adjoint operators on H whose eigenvalues lie in the interval

[− 1
n
, 1 − 1

n

]
. Now,

one can verify that the interior of K(H) consists of those trace-zero self-adjoint operators
whose eigenvalues lie in

]− 1
n
, 1 − 1

n

[
. Consider the map

A −→ φ

(
A +

I

n

)
− I

n
.

It is clear that this is a bijective isometry of the convex set K(H). Hence, Mankiewicz’s result
applies and we get that this map is affine. Obviously, we obtain that φ is also affine. This was
about the finite dimensional case.

In the general case, similarly to the corresponding part of the proof of theorem 3 we can
deduce that φ is an affine bijection of the subset of all finite rank elements in S(H). But this
set is dense in S(H) and φ is an isometry. Hence we infer that φ is a bijective affine map
on S(H), that is, a so-called affine automorphism of S(H). These transformations are well
known to be of the form (2) (see, for example, [12]) and this completes the proof. �
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